Open Access, Volume - 2

Plant Exosome-like Nanovesicles: A Nanoplatform for the Drug Delivery

Krishnananda P Ingle; Gholamreza Abdi; Marjan Assefi*; Sohila Nankali; Nadeem Kizilbash

1Koneru Lakshmaiah University, College of Agriculture, Vaddeswaram, Guntur, P.O. Box 522502, Andhra Pradesh, India.
2Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran.
3University of North Carolina at Greensboro, Greensboro, NC 27403, USA.
4University of North Central, Sandiego, USA.
5Department of Chemistry, Faculty of Physical Sciences, Islamabad.

Received Date : June 20, 2022
Accepted Date : July 27, 2022
Published Date : Aug 17, 2022
Archived : www.jcmimagescasereports.org
Copyright : © Marjan Assefi 2022

*Corresponding Author: Marjan Assefi, University of North Carolina at Greensboro, Greensboro, NC 27403, USA.
Email: massefi@aggies.ncat.edu

Abstract

These days, with the overall spread of various tumors; there is a pressing need in new treatment strategies and prescriptions. With the appearance of medication conveyance strategies, we have gone to another time of treatment. Here, we go to the way that the Plant Exosome-like Nanovesicles will open new open new ways to the logical tests. Various strategies in nano bioelectronics and the significance of Nano science and Nano designing have been examined. Plant Exosome-like Nanovesicles are utilized in drug conveyance framework at nano bio electronic office. It has polar and nonpolar district. Medications will embed into the Plant Exosome-like Nanovesicles. In this paper, they will determine what Plant Exosome-like Nanovesicles are, various procedures to enter Plant Exosome-like Nanovesicles to the objective cells, how it very well may be made, and cooperation’s among Plant Exosome-like Nanovesicles and cell layer. Also, the Preparation of PELNVs and Re-Engineering of PELNVs were discussed.

Keywords: Drug Delivery; Exosome-like; Plant; Nanovesicles

Introduction

Exosome

Exosomes are biological nanovesicles (40–150 nm), are secreted by plant cells and transmits signals among the cells and organisms [1]. Plant Exosome like nanovesicles (PELNVs) are similar to the mammalian Exosome like Nano vesicles (ELNVs) [2]. PELNVs are experimentally harmless and eco-friendly vigorous and viable nano-carriers for modern medicine [3]. Plant-derived exosome-like nanoparticles (PELNVs) are effective to treat the diseases. PELNVs are low cytotoxic and show good biocompatibility compare with synthesized nanoparticles which are linked with complications like immunogenicity, cytotoxicity [4]. PELNVs also having the capacity to target specific tissues like tumour cells through endocytosis mechanisms. PELNVs can be use drug therapies and reducing the off-target effects. PELNVs are not only limited to plants cells crosstalk, it also insights inter-kingdom communications [5]. Researchers are mainly focused on plant nanovesicles in host-pathogen-interactions [15–17] and health-beneficial effects [18–24]. Another approach to use the advantageous properties of plant nanovesicles can be to foster the use of these small non-coding RNA (sRNA)-containing vehicles as bio-compatible and sustainable plant protection agents [25].

This chapter comprehensively describes the plant exosome-like nanovesicles morphological composition and biogenesis of exosomes, physiological functions, Re-engineering of PELNVs and Recent advances in PELNVs along with new insights into development of therapeutic and their clinical applications.

Composition and Biogenesis of Exosomes

Plant exosome vesicles are biogenesis due to various stresses like biotic and abiotic [6]. Qianli et al (2007) reported on barley leaves intravacuolar Multivesicular bodies (MVBs) are produced in the cytoplasm. Barley MVBs contact with cell wall-associated paramural bodies (PMBs) enclosing vesicles, in which membranous or vesicular structures that are placed between the plasma membrane and curved cell wall regions of plant and fungal cells, possibly resulting in the obstruction of growing papillae [7]. As like mammalian cell-derived exosomes (MDEs), Endosomal sorting complex required for transport complexes (ESCRT) viz., ESCRT-0, I, II, and III are
involved in the development of PELNVs in plants [8]. In the biogenesis exosome is trafficking to the ESCRT-I and ESCRT-II complexes through the ubiquitin-binding proteins, then the ESCRT-II complex stimulates and recruits ESCRT-III. However, the PELNVs biogenesis is differing from the MDEs biogenesis. However the biogenesis of PELNVs reported, strong demonstration is needed for the PELNVs biogenesis [9]. There is a need to development of an advance approaches for effective and efficient drug delivery to treat the diseases. Among the approaches PELNVs-based strategy could be a latent approach in the treatment of diseases. Generally, PELNVs, are natural nanoparticles secreted in different plants like grapes [10], grapefruits [11], ginger [12], lemon [13], broccoli [14], coconut [15], carrot [16], and apple [17], has various advantages. PELNVs has been involved in various activities on plant physiological and metabolic processes.

Physiological actions of PELNVs

PELNVs have different components, and intrinsic molecules an it clearly involved in various patterns of signalling regulation pathways. PELNVs constituents are naturally evolved in plant cells, hence it has good biocompatibility and low cytotoxicity. PELNVs are naturally contains therapeutic materials as like MDEs, which can be transferred to the specific target cells. It also has the properties like morphology equal size distribution, density and surface electric charge [18, 19]. Liposomes and artificially synthesized nanoparticles are using in Conventional Drug Delivery System. But these artificial nanoparticles has various limitations like low biocompatibility, toxicity, poor targeting efficiency, and short retention time in the circulatory system of body [20,21]. PELNVs are having high rigidity, suitable morphology and stability, it also can integrate with drugs and to target the specific cells or tissues in the body [22]. The tissue specificity of PELNVs is decided by lipids and proteins orientation, ability to change the gene expressions, hydrophobic drugs transfer, and escape from the immunity. Plant defence mechanism and in the developmental processes PELNVs plays important role [27, 28]. Plant exosome-like nanovesicles (PELNVs), being innately deploy with bioactive compounds like lipids, proteins, RNA, and other pharmacologically active molecules, offer unique morphological and compositional characteristics as natural nanocarriers. It also convincing physicochemical traits support their modulative role in physiological processes, all of which have adopted the concept that these nanovesicles may be highly proficient in the development of next-generation biotherapeutic and drug delivery nanoplatforms to meet the current stringent demands of current clinical challenges.

a) Preparation of PELNVs

One of the major advantages of PELNVs is it can prepare from edible plants, which allows abundant quantity preparation. The overlapped size range and rather indistinguishable morphological similarities necessitates the current efforts in designing a feasible isolation method of ELNVs from the masses of the subpopulation of extracellular vesicles (EVs). In this consideration, the differential ultracentrifugation (UC) technique is commonly used and has acquired the benchmark status in isolation and purification of ELNVs owing to its ease of use and inexpensiveness [23,24]. The preparation technique mainly depends on the size and density variations of nano particles [25]. Plant extract through a continuous centrifugation with gradually increasing the speed and subsequent cycles, gradually increase the centrifugation speed and longer duration than the previous cycle to get the higher density particles. In the subsequent step, collect the supernatant and subjected to high speed centrifugation (100,000 ×g) to regain the pellet, which is subsequently resuspend and wash with phosphate buffer [26]. PELNVs pave a way to understand the communications among the cells and development of nano vesicles to target specific drug delivery.

b) Re-Engineering of PELNVs

Re-engineering of PELNVs is major focus on to prepare uniform-sized PELNVs because they vary in size (50 to 500nm). For efficient drug loading and delivery is one major criterion, but it is not possible with original form of PELNVs. So, it is essential to formulate uniform-sized nanoparticles with competent drug loading [29]. For the re-engineering of PELNVs as drug delivery nanoplatforms, scientists have successfully adopted the Bligh and Dyer technique to extract nano-lipids from PELNVs, In this technique extracted nano-lipids are processed through a 200-nm liposome extruder, which eventually reform them into a uniform-size [30]. PELNVs inherently express lipids and phosphatidic acid (PA) that naturally promote adhesion to a particular cell, and natural biodistribution [31]. It also has tailored their surface, which can expand the scope of desired target specificity [32]. Specific functionalizing PELNVs-based nanoplatforms can help in specific cancer treatment.

Morphological Characterization

Ato illustrate ultrastructure analysis of the subcellular status of PELNVs, Transmission electron microscopy (TEM) and atomic force microscopy (AFM) is used [33, 34, 35]. By measuring resolution in fractions of nanometers, AFM proves its superiority to traditional optical microscopy [36, 37]. Dynamic light scattering (DLS), also known as quasi-elastic light scattering, photon correlation spectroscopy, can be used to determine the size and zeta potential of scattered PELNVs [35]. DLS is the benchmark approach in the evaluation of size distribution of suspension particles in numerous scientific disciplines since it is non-intrusive and ultra-sensitive, requiring only a small sample volume to calculate accurate and precise size [38-40]. Furthermore, researchers are increasingly using nanoparticle tracking analysis (NTA) to quantify the amount of ELNVs in a sample container and characterise their size distribution.

Biochemical Characterization

In terms of protein, lipid, and RNA concentration, PELNVs’ chemical composition profiles differ significantly from those of mammalian-derived ELNVs [35]. Lipid, nucelie acid, and protein compositional analyses of PELNVs are valued as essential characterization criteria for PELNV quality control [41, 42]. Plant and mammalian cell-derived ELNVs use the same
chemical component characterisation methodologies. Immunoblotting of certain proteins is the most extensively used method for confirming the origin of ELNVs. For detailed study of the components of PELNVs, ELISA, sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE), [43] liquid chromatography-tandem massspectrometry, [44, 45] a microfluidic electrophoresis analyzer, and high-throughput small RNA sequencing have been established [46, 47]. Protein analysis commonly uses colorimetric tests such as bicinchoninic acid (BCA), fluorometric assays, SDS-PAGE, and western blotting [48]. Raman spectroscopy is another advanced molecular characterisation technique that shows the chemical structure of PELNVs by producing a laser beam. They contain a specific range of biomolecules, such as peptides and nucleic acids [49]. Furthermore, for RNA content investigation of PELNVs, microarray analysis, digital droplet PCR, and next-generation sequencing approaches have been devised [50]. A sulfophospho-vanillin test and total reflection Fourier transform infrared spectroscopy [51] are the most often utilised procedures for lipidomic characterisation of PELNVs.

References

