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Abstract

Background and aims: The effects of brain death and car-
diac death on lung tissue were different. In the pathological 
process of brain death and heart death, the activation and 
regulation of complement system show obvious differences. 
Thus, our study aims to explore the difference of comple-
ment-related genes between the two.

Methods: Using data from the Gene Expression Omnibus 
(GEO), we explored the expression profiles of Complement-
Related Genes (CRGs) in lung tissues from Donate after Brain 
Death (DBD) and Donate after Cardiac-Dead (DCD) with the 
help of the R data package. Our study involved analyzing 
protein interactions, investigating gene correlations, and 
conducting functional enrichment. Key genes were identi-
fied using a range of machine learning techniques.

Results: Analysis of GEO datasets, which included 24 DBD 
and 11 DCD samples, identified two critical complement-re-
lated genes (CRGs): UNC119, FBLN2, and BCHE. The combi-
nation of these genes resulted in an Area Under the Curve 
(AUC) of 0.993, effectively distinguishing between lung tis-
sues from DBD and DCD. Additionally, nomogram, decision 
curve, and calibration curve analyses confirmed their diag-
nostic efficacy.

Conclusion: We created a prognostic model for lung tis-
sues from DBD and DCD donors using two pivotal Comple-
ment-Related Genes (CRGs), which showed impressive pre-
dictive power. These insights deepen our comprehension of 
the complement system’s role in DBD and DCD lung tissues.
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Introduction

The effects of brain death and cardiac death on lung tissue 
were different. Death is usually accompanied by neurogenic 
pulmonary edema and systemic inflammatory response, which 
is caused by the excessive release of norepinephrine from sym-
pathetic nerve stimulation, resulting in increased permeability 

of pulmonary microvessels, resulting in acute pulmonary ede-
ma [1,2]. At the same time, people with brain death are often 
supported by mechanical ventilation, which can maintain oxy-
gen supply while avoiding organ ischemia [3]. However, after 
cardiac death, rapid circulatory arrest leads to ischemia-reper-
fusion injury and rapid hypoxia of lung tissue, which leads to a 
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range of cellular damage and metabolic dysfunction, increasing 
the risk of pulmonary edema and inflammatory responses. In 
this case, donated lungs may not be as stable in texture as those 
obtained at brain death, and recovery after transplantation is 
difficult due to unmanageable ischemic time [4-6]. Therefore, 
understanding the different effects of the two on lung tissue is 
critical to optimizing strategies for the acquisition and preserva-
tion of transplanted organs.

The complement system is an important part of the innate 
immune response and plays multiple roles in inflammatory re-
sponses and tissue damage [7]. It consists of a series of plasma 
proteins that are activated in response to pathogen invasion or 
tissue damage, initiating expansion responses via the classical, 
bypass, and lectin pathways. Complement activation leads to 
increased cell lysis and phagocytosis, in which C3 and C5 com-
plement components play a key role in regulating the inflam-
matory response by attracting neutrophils and other immune 
cells to the site of injury or infection. In addition, the comple-
ment system can directly cause pathogen destruction through 
the formation of Membrane Attack Complexes (MAC). However, 
overactivation or improper regulation of the complement sys-
tem can lead to excessive inflammatory responses and tissue 
damage, exacerbating pathological damage and triggering dis-
eases such as autoimmune disease and transplant rejection [8]. 
Therefore, the complement system plays a double-edged role in 
maintaining the balance between immune defense and damage 
repair.

In the pathological process of brain death and heart death, 
the activation and regulation of complement system show 
obvious differences. Activation of the complement system in 
brain-dead states is often strongly associated with Systemic In-
flammatory Response Syndrome (SIRS), which may be due to 
significant changes in norepinephrine/epinephrine levels trig-
gered by brain death. At this time, complement activation may 
exacerbate the inflammatory response, resulting in increased 
damage to lung and other tissues [9]. However, because the 
heart still keeps beating, complement-mediated damage is rela-
tively better controlled. In contrast, after cardiac death, lung 
tissue is at risk of ischemia-reperfusion injury due to the rapid 
cessation of blood circulation, and the complement system is 
dramatically activated during reperfusion, resulting in a massive 
release of inflammatory cytokines. In this case, the complement 
system may further exacerbate reperfusion-related tissue dam-
age and cell necrosis [10]. Therefore, the activation pathways of 
the complement system and its contribution to tissue damage 
in the two states of death show distinct patterns, and this differ-
ence needs to be deeply understood and managed during organ 
protection and transplantation.

Materials and methods

Patients and datasets

The transcriptomic analysis of lung specimens from DBD and 
DCD donors utilized the GSE18995 dataset, obtained from the 
GEO database, which included 24 DBD and 11 DCD samples. 
The flowchart illustrating this study is presented in (Figure 1).

Expression of DEGs and CRGs between DBD and DCD

We used the R package “limma” to perform a differential ex-
pression analysis on the processed data from the GEO database, 
identifying Differentially Expressed Genes (DEGs) between DBD 
and DCD. The results were visualized with volcano and heat-
map plots using the “ggplot2” and “heatmap” R packages, with 

the criterion for selection being an adjusted P<0.05. The inter-
section of DEGs (|log CF| >1 and adjusted P<0.05) related to 
CRGs was identified using the “VennDiagram” R package and 
defined as DE-CRGs for further analysis. A boxplot for the DE-
RGs was created using the “ggpubr” R package. A Venn diagram 
was used to pinpoint CRGs within DRGs between DBD and DCD 
samples. Subsequently, multivariate analysis was conducted to 
identify key DE-CRGs.

Correlation analysis and protein‒protein interaction (PPI) 
network construction

The R package “heatmap” was used to generate heatmaps 
for 15 DE-CRGs. PPI networks for these DE-CRGs were con-
structed using the STRING database (https://string-db.org/). 
Furthermore, we employed the “ggplot2” package (version 
3.3.6) in R to conduct pairwise correlation analysis of the data-
set variables, visualizing the results in a heatmap.

Gene Ontology (GO) and KEGG pathway enrichment analy-
sis

To analyze the biological function of genes, we employed 
the “clusterProfiler” package in R, which facilitated the enrich-
ment analysis of Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways [11-13]. The GO anno-
tation encompassed three domains: Biological Processes (BP), 
Cellular Components (CC), and Molecular Functions (MF).

Machine learning methods to identify key genes

The “glmnet” package in R was used to conduct Least Ab-
solute Shrinkage and Selection Operator (LASSO) regression on 
the chosen linear model, effectively reducing data dimension-
ality while retaining essential variables [14]. Furthermore, we 
integrated Random Forest (RF) algorithms for optimal gene se-
lection. RF, a regression tree technique, leverages bootstrap ag-
gregation and randomization of predictors to achieve high pre-
diction accuracy, implemented via the “randomForest” package 
in R [17]. The genes identified by these three machine learning 
methods were intersected to establish the final key genes.

The Establishment of the the DE-CRGs diagnostic Model

In developing the DE-CRGs diagnostic model, we utilized the 
GSE18995 dataset. Initially, we constructed a nomogram model 
using the “rms” package in R to predict the likelihood of DBD 
occurrence. Following this, we employed the “pROC” package 
[18] to assess the Area Under the Curve (AUC), along with the 
specificity and sensitivity of the diagnostic value for the marker 
genes through time-dependent ROC analysis. Each central gene 
was assigned a score, which was then aggregated to produce a 
total score.

Statistical analyses

Continuous variables are reported as mean ± standard de-
viation. The student’s t-test was used for comparisons between 
two groups, while the Wilcoxon rank-sum test was applied to 
non-normally distributed variables. A p-value of less than 0.05 
was considered statistically significant. The symbols *, **, and 
*** indicate p-values of less than 0.05, 0.01, and 0.001, respec-
tively. All statistical analyses were conducted using R software 
(version 4.2.1).
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Results

Identification of DE-CRGs associated with DBD

Using the “limma” package, we identified 3,868 DEGs (adj. 
p<0.05) from the GSE18995 dataset, which included 24 DBD and 
11 DCD samples. Among these, 86 genes were up-regulated, 
and 109 were down-regulated. The volcano plot illustrating the 
differentially expressed genes is presented in (Figure 2A), while 
(Figure 2B) displays the heatmap of the top 50 differential genes 
between DBD and DCD. Additionally, 596 CRGs [19] overlapped 
with the 195 DEGs((|log CF| >1 and adj. p<0.05), revealing 15 
DE-CRGs with significant differences between the DBD and DCD 
(Figure 2C). Eight DE-CRGs (TAC, CXCR, SERPINE, CXCL8, PTX3, 
CCL2, IL6, and SELE) were high expression and seven DE-CRGs 
(C1QTNF2, UNC119, F13A1, CXCL12, FBLN2, BCHE, and IGHG1) 
were low expression in DBD (Figure 2D), and the heatmap of 
these 15 DE-CRGs is shown in (Figure 2E).

A PPI analysis was conducted using STRING to examine po-
tential interactions among the 15 Differentially Expressed Com-
plement-Related Genes (DE-CRGs), as shown in (Figure 3A). The 
correlations among these 15 DE-CRGs are presented in Figure 
3B. DE-CRGs were found to be related to response to Lipopoly-
saccharide (LPS), inflammasome complex, cysteine-type endo-
peptidase activity, and cytokine receptor binding, among other 
pathways, as revealed by GO enrichment analysis (Figure 3C). 
KEGG pathway analysis showed involvement in lipid and athero-
sclerosis and non-alcoholic fatty liver disease (Figure 3C).

Identification of diagnostic marker genes for DBD

Considering the individual complexity and heterogeneity of 
DBD and DCD patients, candidate CRGs were identified from 15 
DE-CRGs using RF and LASSO validated machine learning mod-
els to assist in predicting DBD diagnosis (Figures 4A & B). Out 
of the 15 DE-CRGs analyzed, three were successfully identified 
(refer to Figure 4C).

Evaluation of the diagnostic marker genes

A nomogram model was created to differentiate lung tissue 
from DBD and DCD, incorporating three central genes: UNC119, 
FBLN2, and BCHE (Figure 5A). The numerical values of each 
biomarker in the nomogram were used to distinguish between 
the two tissue types, and a calibration curve showed a strong 
correlation between predicted and actual probabilities (Figure 
5B). Decision Curve Analysis (DCA) indicated that the net ben-
efit from this model was significantly greater than zero, under-
scoring its considerable accuracy and utility in clinical decision-
making (Figure 5C). ROC curve analysis demonstrated that the 
combined features of the three key genes performed well in 
distinguishing between DBD and DCD lung tissues (AUC=0.936, 
Figure 5D), with individual predictive ROC results for each gene 
closed to 0.90 (Figure 5E). These results suggest that the model 
based on these three marker genes has strong predictive effica-
cy for differentiating between lung tissues from DBD and DCD.

Figure 1: Flowchart of the present study.

Discussion

Brain Death (BD) donors are the main organ source for lung 
transplantation [20]. The death process can induce acute lung 
injury and aggravate lung ischemia-reperfusion injury [15]. 
While many immune mechanisms have been shown to stimulate 
donor organ damage and predispose grafts to poor outcomes, 
activation of the complement system has been shown to play a 
central role in BD-related graft damage. In both preclinical and 
clinical studies of heart and kidney transplants, grafts from BD 
donors were not only associated with more severe Ischemia-
Reperfusion Injury (IRI), but posttransplant pathology was also 
significantly associated with levels of complement activation 
[21,22].

Complement is a major component of the immune system 
[23]. It is heavily involved in the body’s defense function and 
its own immune regulation, and its overactivation plays a prim-

ing and amplifying effect in the initial stage of inflammatory re-
sponse. The complement system is a particularly important up-
stream sensor and effector system, and the activation products 
of complement are important regulators in inflammatory and 
immune processes. As an important component of the immune 
system, complement is heavily involved in the body’s defense 
response and its own immune regulation, and its overactivation 
plays an initiating and amplifying effect in the initial stage of 
inflammatory response [23]. Many causes of ALI have been ex-
perimentally demonstrated to be involved in the activation of 
the complement system [24].

In this study, we investigated the potential role of CRGs in 
lung tissue of DBD and DCD, identified potential key genes. 
We retrieved lung tissue samples from DBD and DCD patients 
from the GEO database for statistical analysis to identify DEGs, 
ultimately identifying 15 DEGs associated with complement 
pathways. These results imply that CRGs may play a role in the 
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Figure 2: Identification of DE-CRGs. (A) A plot depicting the differential expression of genes between 
Brain-Dead (DBD) and Cardiac-Dead (DCD) donors. (B) Display of heatmaps for the most significant 
50 genes. (C) Diagrams of Venn layout reveal commonalities between Differentially Expressed Genes 
(DEGs) and Complement-Related Genes (CRGs). (D) Presentation of fifteen Differentially Expressed 
pyroptosis-Related Genes (DE-CRGs) with accompanying boxplots showing variations in expression 
levels between DBD and DCD scenarios. (E) A heatmap is shown to illustrate the expression patterns for 
these fifteen DE-CRGs. Statistical significance is indicated as follows: *p<0.05; **p<0.01; ***p<0.001.,  
CRGs: Complement-Related Genes; DBD: Donate after Brain-Dead; DCD: Donate after Cardiac-Dead.

Figure 3: PPI, GO, and KEGG Analysis of 15 DE-CRGs. (A) This panel displays a network diagram highlighting 
the relationships among the fifteen DE-CRGs. (B) A correlation analysis for these fifteen DE-CRGs is visualized, 
with orange indicating positive correlations and blue denoting negative correlations. (C) Functional analysis 
was performed on ten of these DE-CRGs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) methodologies. Statistical significance for the analyses is noted with *p<0.05.  
DE-CRGs: Differentially expressed pyroptosis-related genes.
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Figure 4: Machine Learning Identification of Diagnostic Marker Genes. (A) In the Random Forest (RF) analysis, 
three genes were identified having Gini values exceeding 2. (B) Analysis of coefficients was performed using the 
Least Absolute Shrinkage and Selection Operator (LASSO) method. (C) A Venn diagram illustrates the shared 
genes identified by both machine learning algorithms, namely RF and LASSO.

Figure 5: Establishment of Marker Gene Diagnostic Model. (A) A nomogram has been constructed for the 
marker genes to facilitate the prediction of clinical outcomes. (B) A calibration curve was developed to evaluate 
the accuracy of the nomogram in comparison to actual outcomes. (C) The effectiveness of the nomogram 
model’s predictions was demonstrated using Decision Curve Analysis (DCA), highlighting the clinical utility by 
comparing the net benefits across a range of threshold probabilities against two reference strategies: “treat 
all” and “treat none.” (D) The combined predictive power of the three key genes was quantified by a Receiver 
Operating Characteristic (ROC) curve, achieving an Area Under the Curve (AUC) of 0.936, with a confidence 
interval (95% CI) ranging from 0.976 to 1.0, indicating a high level of diagnostic accuracy. (E) Additionally, the 
ROC results for the individual key genes—UNC119, FBLN2, and BCHE—were reported with AUC values of 0.894, 
0.898, and 0.905, respectively, underlining each gene’s significant predictive capability. This detailed analysis and 
comparison with “all” or “none” treatment strategies elucidate the substantial benefits and clinical applicability 
of the nomogram, supporting its potential use in personalized medicine to make informed treatment decisions 
based on genetic profiling.
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progression of lung injury. Our correlation analysis showed that 
the identified DE-CRGs were closely interconnected; however, 
some exhibited no clear correlation at the protein level, em-
phasizing the heterogeneity in CRG interactions at both gene 
and protein levels.

The important role of DE-CRGs in response to myeloid leuko-
cyte migration, regulation of leukocyte migration, external side 
of plasma membrane, collagen-containing extracellular matrix, 
chemokine activity chemokine receptor binding, viral protein 
interaction with cytokine and cytokine receptor, AGE-RAGE sig-
naling pathway in diabetic complications, and malaria was re-
vealed by GO and KEGG enrichment analyses.

Analyses using LASSO, and RF of the 15 DE-CRGs identified 
three key genes—UNC119, FBLN2, and BCHE—that effectively 
differentiate lung tissue from DBD and DCD, achieving an AUC 
of 0.936. The nomogram model, supported by calibration 
curves and Decision Curve Analysis (DCA), demonstrated robust 
predictive capability and significant clinical relevance.

UNC119 is a conserved intracellular protein that mainly 
plays a role in the nervous system, especially in neurons [25], 
and is involved in a variety of biological processes such as cell 
signal transduction, cytoskeleton regulation and membrane 
transport. UNC119 binds to some intracellular small molecules 
(such as small GTPase), regulates their activity, and plays an im-
portant role in the development and function of neurons [26]. 
UNC119 may regulate the function of immune cells by affect-
ing intracellular signal transduction pathway, thereby indirectly 
affecting the activation and regulation of complement [27]. In 
immune response, UNC119 may be involved in the interaction 
between immune cells and complement components, affecting 
their ability to recognize and clear pathogens. UNC119 may play 
a regulatory role in the development and function of immune 
cells, thereby affecting complement-related immune response. 
FBLN2 (Fibulin-2) is an extracellular matrix protein, belonging 
to the fibronectin family, which plays an important role in tis-
sue development, repair and maintenance. FBLN2 plays a key 
role in a variety of biological processes, including cell adhesion, 
signaling, and the formation of tissue structure [28-30]. FBLN2 
may affect the function of complement system by influencing 
the structure of extracellular matrix and altering the deposition 
and activation process of complement components. FBLN2 is 
expressed in certain immune cells, such as macrophages and 
lymphocytes, and may influence their response to complement 
activation by regulating the adhesion and migration of these 
cells. Butyrylcholinesterase (BCHE) is an enzyme in blood plas-
ma that is primarily responsible for the hydrolysis of cholines-
terase compounds [31] in the body, BCHE plays an important 
role in neurotransmission, drug metabolism, detoxification and 
other processes. Similar to Acetylcholinesterase (AChE), BCHE 
acts mainly in some tissues close to neurons, including blood 
and liver, but it has a broader substrate specificity. The main 
physiological function of BCHE is to hydrolyze Butyrylcholine 
and other related ester compounds, which play an important 
role in the regulation of neurotransmission, although its role 
is relatively limited compared with AChE. The activation of the 
complement system usually triggers an inflammatory response, 
and BCHE may play a supporting role in this process, by hydro-
lyzing and clearing some inflammatory mediators, alleviating 
the intensity of the inflammatory response. This also hints at 
its potential role in regulating complement-mediated inflamma-
tion [32].

Our study has some limitations. Firstly, we conducted ge-
netic analysis on data sourced from the GEO database, which 
may introduce certain biases. Secondly, the sample size was 
relatively small, which could impact the generalizability of the 
findings. Finally, we did not conduct additional tests to verify 
the expression of these genes.

Conclusion

We initially identified two significant genes that, in combina-
tion, accurately differentiate between lung tissue from DBD and 
DCD.
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